翻訳と辞書
Words near each other
・ Filley
・ Filley Township, Gage County, Nebraska
・ Filley, Nebraska
・ Fillgraderstiege
・ Fillibusters Camp
・ Fillie Lyckow
・ Fillies' Mile
・ Fillies' Sprint Stakes
・ Fillies' Trial Stakes
・ Filligar
・ Filling
・ Filling area conjecture
・ Filling carousel
・ Filling factor
・ Filling Factories in the United Kingdom
Filling radius
・ Filling station
・ Filling Station (magazine)
・ Filling station attendant
・ Filling the tree
・ Filling Up the City Skies
・ Filling Up with Heaven
・ Filling-in
・ Fillinges
・ Fillingham
・ Fillion
・ Fillip
・ Fillip Rodrigues Da Silva
・ Fillip Williams
・ Fillipe Soutto


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Filling radius : ウィキペディア英語版
Filling radius
In Riemannian geometry, the filling radius of a Riemannian manifold ''X'' is a metric invariant of ''X''. It was originally introduced in 1983 by Mikhail Gromov, who used it to prove his systolic inequality for essential manifolds, vastly generalizing Loewner's torus inequality and Pu's inequality for the real projective plane, and creating systolic geometry in its modern form.
The filling radius of a simple loop ''C'' in the plane is defined as the largest radius, ''R'' > 0, of a circle that fits inside ''C'':
:\mathrm(C\subset \mathbb^2) = R.
==Dual definition via neighborhoods==

There is a kind of a dual point of view that allows one to generalize this notion in an extremely fruitful way, as shown by Gromov. Namely, we consider the \varepsilon-neighborhoods of the loop ''C'', denoted
:U_\varepsilon C \subset \mathbb^2.
As \varepsilon>0 increases, the \varepsilon-neighborhood U_\varepsilon C swallows up more and more of the interior of the loop. The ''last'' point to be swallowed up is precisely the center of a largest inscribed circle. Therefore we can reformulate the above definition by defining
\mathrm(C\subset \mathbb^2) to be the infimum of \varepsilon > 0 such that the loop ''C'' contracts to a point in U_\varepsilon C.
Given a compact manifold ''X'' imbedded in, say, Euclidean space ''E'', we could define the filling radius ''relative'' to the imbedding, by minimizing the size of the neighborhood U_\varepsilon X\subset E in which ''X'' could be homotoped to something smaller dimensional, e.g., to a lower-dimensional polyhedron. Technically it is more convenient to work with a homological definition.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Filling radius」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.